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Abstract— Wildfires pose a significant risk to ecosystems, 

animals, and people. Predicting them early can help prevent major 

disasters. In this study, a type of neural network called a Liquid 

Neural Network (LNN) was employed to predict forest fires based 

on meteorological and climatic data. The LNN model was tested 

using the Mendeley Forest Fire Dataset, which includes real data 

such as temperature, humidity, wind speed, and rainfall. With 

96% accuracy, the LNN model predicted the probability of a forest 

fire. These results show that LNNs can be a powerful tool for early 

forest fire prediction and could help authorities take timely action 

to reduce damage. Particularly in areas with dry weather and 

thick vegetation, forest fires represent a significant threat to 

natural ecosystems, as well as to property and life on Earth. Early 

detection and prediction of such fires are crucial for effective 

disaster management and mitigation efforts. This research 

explores the use of LNNs, a dynamic and flexible type of neural 

model, to predict forest fires based on meteorological and climatic 

data. The model was trained and tested on the Mendeley Forest 

Fire Dataset, which includes various features such as heat, relative 

humidity, breeze velocity, and precipitation—factors known to 

influence fire occurrences. Unlike traditional models, LNNs can 

adapt more efficiently to changing input patterns, making them 

well-suited for handling time-sensitive and non-linear data. LNN 

achieved a prediction accuracy of 96%, resulting in good efficacy 

in identifying conditions that may lead to forest fires. This level of 

performance demonstrates the potential of LNNs to support real-

time decision-making tools for forest management and emergency 

response planning. 
Keywords—Forest Fire, Neural Network, Natural Calamities, 

Adaptive Systems, Spatiotemporal Modeling.  

I.  INTRODUCTION 

LNNs are a type of Recurrent Neural Network (RNN) 
designed to handle data that changes over time. LNNs are 
especially useful for making predictions based on dynamic or 
time-dependent information, such as weather patterns and 
environmental conditions. Forest fires are influenced by many 
changing factors like temperature, wind speed, humidity, and 
rainfall. LNNs can learn the complex, non-linear relationships 
between these variables, helping the model understand how 
they interact to increase or decrease the risk of fire. Unlike 

traditional models, LNNs are more flexible and can adapt as 
new patterns appear in the data. This is important because 
environmental conditions change constantly, and a model that 
can adjust to these changes improves prediction accuracy. 
Weather and environmental data are collected over time. LNNs 
are naturally suited to work with this type of sequential data. 
They can track how conditions evolve over hours, days, or 
weeks and use this information to forecast fire risk more 
precisely.  

Due to their efficiency and adaptability, LNNs can be used 
in real-time systems. This allows forest management teams to 
receive timely alerts and take early action when the risk of fire 
becomes high. LNNs can be used as a reliable tool for early 
warning systems, reducing the damage caused by uncontrolled 
forest fires. Traditional models often treat data as static, 
meaning they don’t fully account for how conditions change 
over time. LNNs, however, are built to process time-series data, 
such as hourly temperature or wind changes. This allows LNNs 
to learn patterns over time and make better predictions based on 
recent trends.  

Forest fire risk depends on many interacting factors like 
weather, vegetation, and terrain. LNNs can model these 
complex and non-linear relationships better than traditional 
statistical or rule-based models. LNNs can adapt to new or 
unexpected data patterns better than fixed traditional models. 
For example, if weather conditions shift due to climate change, 
LNNs are more capable of adjusting their predictions 
accordingly, making them more reliable in changing 
environments. Compared to some Deep Learning (DL) models 
[1] that need massive datasets, LNNs are relatively lightweight 
and efficient. This makes LNNs suitable even when data is 
limited or collected in remote forest areas. LNNs are designed 
to make fast, real-time decisions. This is critical in forest fire 
management, where early warnings can help prevent fires from 
spreading and allow quicker responses from firefighting teams. 
LNNs have a simpler internal structure that naturally avoids 
overfitting to training data, which is a common problem in 
complex traditional neural networks. This makes their 
predictions more general and reliable in real-world scenarios. 
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II. RELATED WORKS 

Many traditional models, such as Logistic Regression or basic 

decision trees, and Support Vector Machines (SVMs), treat 

input data as static data. However, environmental conditions 

like temperature, humidity, and wind speed change over time. 

Ignoring this time-dependent nature leads to inaccurate 

predictions. Forest fires result from a combination of many 

factors [2]. Traditional models like Contrastive Vision 

Transformer(CviT), and eXtreme Gradient Boost (XGB)  often 

cannot capture the complex, non-linear relationships between 

these variables. As a result, traditional methods oversimplify 

the problem and miss subtle patterns that could signal an 

approaching fire. Some existing systems are slow and not 

optimized for real-time use. Traditional methods [3] require all 

input data to be pre-collected and processed in batches, which 

delays prediction and response, especially in emergencies.  

Traditional Machine Learning (ML) models [4] may either 
learn too much from the training data (overfitting) or fail to 

learn enough (underfitting). Both issues reduce prediction 
performance when new or unseen data is introduced. Many 
existing models work well only in the regions they were trained 
on. Traditional methods struggle to adapt to different 
environments, such as forests with varying terrain, climate, or 
vegetation types.  Traditional methods always fail in accurately 
predicting forest fires due to overlooking correlations between 
multiple factors like wind, speed, and vegetation type, 
considering a narrow set of variables like weather data, 
historical fire data, and vegetation types, and ignoring real-time 
satellite imagery and real-time data feeds. Due to these 
limitations, many existing models fall short of predicting forest 
fires accurately and quickly. This makes it harder for authorities 
to take timely action, increasing the risk of damage to forests, 
wildlife, and human settlements. A review of existing forest fire 
prediction models is shown in Table I. The review includes the 
method employed, the dataset used, the performance analysis, 
and direct technical demerits from existing works.

TABLE I.  A REVIEW OF EXISTING FOREST FIRE PREDICTION TECHNIQUES 

Research Method Dataset Performance Analysis Direct Technical Demerit from Existing Works 

[5] 
Stacking model, 
random sampling 

Hotspot data 

collected from 

Chongqing City, 
China 

 

Accuracy=94.47% 

The model does not learn from how environmental 

variables change over time. The model is not 

efficient in capturing time-dependent patterns in the 
data. 

[6] SVM Public dataset 

Accuracy=87% Low accuracy. It is not inherently designed for 

time-series data. It still operates on static input 
features. 

[7] CViT-Pool Former 
Forest Fire Big Data 

dataset 

 

 

Accuracy= 92.8% 

The model does not explicitly capture how 

environmental and weather conditions evolve. The 

model is not designed to learn temporal 
dependencies. Heavy Preprocessing Requirements, 

Computational Complexity. 

[8] 
Wireless Sensor 
Network (WSN) 

Public dataset 

 

Accuracy= 86.67% 

Limited Predictive Power and Generalization. A 

prediction accuracy of 86.67%, while useful, is 
relatively low compared to more advanced models 

that can reach above 90–95% using richer temporal 
and spatial modeling techniques. 

[9] 

Convolution Neural 

Network (CNN) + 

transformer + 
Blockchain 

Public Dataset 

 

Accuracy=91% 

Lack of real-time temporal modeling and scalability 

challenges in drone and blockchain integration, 

Lack of Explicit Time-Series Analysis, Latency, 
and Overhead from Blockchain Integration. 

[10] 
Back Propagation 

Neural Network 
Real-time dataset 

Accuracy=90% Training on Simulated Data (FlamMap) Only, No 

Real-Time Temporal Modeling 

[11] ML 
Amazon Rainforest 

fires 
Accuracy=89% 

Low accuracy. 

[12] 
Multi-Sensor 

Network system 
Real-time dataset 

 

 

 

Accuracy=93.6% 

The approach relies heavily on the widespread 

deployment of physical sensors. Sensor failure or 
damage results in false predictions. The system’s 

performance relies on accurate readings from 

multiple sensors, but real-world sensor data can be 
noisy, delayed, or inaccurate, especially in changing 

field conditions. 

[13] XGB 

Self-built dataset. 

Data was collected 

from Alberta, 
Canada. 

 

Accuracy=87.2% 

Sensitivity=75% 

It is a non-sequential model that does not natively 

capture temporal dependencies. Low accuracy. A 

sensitivity of 75% indicates that one in four actual 
fires might not be detected. 

[14] 

Federated Learning, 

IoT-Based Forest 
Fire Prediction 

Public Dataset 

 

Accuracy=76% Low accuracy, Severe Class Imbalance. 
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III. PROPOSED METHODOLOGY 

A. Dataset details 

Mendeley Forest Fire Dataset [15], a curated dataset 
comprising images for forest fire detection and classification, 
was employed in this research. The dataset contains 2,974 
images categorized into fire and non-fire classes. The Mendeley 
Forest Fire Dataset is a well-known dataset commonly used for 
forest fire prediction. The dataset contains meteorological and 
fire occurrence data collected from a forested region in 
Portugal. It is primarily used to predict the area burned by forest 
fires based on weather conditions and time features. The dataset 
details are shown in Table II. 

TABLE II.  DATASET DETAILS 

Feature name Description 

Temperature (°C) 
Measures the surrounding air temperature at 
the time of the fire record. 

Relative Humidity 
(%) 

Shows how much moisture is present in the 
air compared to the maximum possible. 

Wind Speed (km/h) 
Indicates the speed of wind, which can 

influence fire spread. 

Rainfall (mm) 
Records the amount of rain during the 
period, which can reduce fire chances. 

Fine Fuel Moisture 

Code (FFMC) 

Estimates the moisture content in smaller 

vegetation that ignites quickly. 

Duff Moisture Code 
(DMC) 

Represents the dryness level in loosely 
packed forest floor materials. 

Drought Code (DC) 
Captures long-term dryness and deep fuel 
layer conditions. 

Initial Spread Index 

(ISI) 

Predicts how quickly a fire might spread 

when started. 

Build-Up Index 
(BUI) 

Measures fuel availability and build-up 
potential. 

Fire Weather Index 
(FWI) 

Provides a comprehensive measure of fire 
risk based on other indices. 

Classes (Binary) 
Label whether a fire occurred (1) or not (0) 
for that record. 

B. Preprocessing 

One-hot encoding was used for categorical encoding. Z-
score normalization was used to normalize numerical inputs. 
Binary transformation was used to handle skewed targets. Class 
weighting was used to avoid bias to the majority class. Area 
clipping was used for outlier removal. Pseudo-sequence 
formatting was used to suit LNN's time-based architecture. 
Stratified sampling was used for splitting the training and 
testing data. 

C. Construction of LNN 

The input layer is used to accept forest fire features over 
time. The input layer accepts sequential environmental data 
inputs (e.g., temperature, humidity, wind speed, rainfall). The 
liquid cell is used to model dynamic time-varying processes. 
The liquid cell is the core of the LNN, modeled by differential 
equations that update the hidden state over time. The readout 
layer is used to map the internal state to the probability of fire 
occurrence. The readout layer takes the final hidden state and 
produces a prediction probability. Optimizer is used to train the 
network using temporal gradient descent. The optimizer trains 

the network using gradient-based methods like Adam. The 
construction of LNN is shown in Fig.1. 

 

Fig. 1. Construction of LNN 

The algorithm for training the LNN model is given below: 

For each training instance with sequence {𝑥1 , 𝑥2 , . . . , 𝑥𝑇}: 

Calculate ht =  ∫ 𝑓(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑉𝑥𝑡−1)
𝑇

𝑡=1
 with x0 =0, h0=0. 

Where xt indicates input vector at time step 𝑡, ht indicates hidden 

state at time 𝑡, f(.) indicates activation function, T represents 

sequence length, and t  represents timestep. 

Where W, U, and V represent weight matrices. 

At the final time step: 

Calculate Predicted label: yp = 𝜎(𝑤𝑜𝑢𝑡
𝑇   ℎ𝑇), where y is the 

target label. 

Where σ is the sigmoid activation for binary classification, and 

wout indicates the output weight vector. 

The algorithm for testing the LNN model is given below: 

For each Test instance: 

Calculate predicted class yclass  = {
1, 𝑦𝑝 ≥ 0.5

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Compute accuracy A = 
1

𝑁
∑ 𝐼𝑓  (𝑦𝑖

𝑐𝑙𝑎𝑠𝑠 = 𝑦𝑖
𝑁
𝑖=1 ) 

Where If indicates the indicator function, N represents the total 

number of test samples, and yi indicates the actual target value.  
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IV. RESULTS AND DISCUSSION 

A. Experimental Setup 

The Linux operating system, Jupyter Notebook, Python 3.8, 
Intel i7, 16GB RAM, 50 GB SSD Storage, and PyTorch were 
used as software and hardware resources for the experimental 
part. The configuration of LNN is shown in Table III. 

TABLE III.  LNN MODEL CONFIGURATION 

Parameter Value 

Input dimension 10 features 

Hidden state size 64 

Activation Function sigmoid 

optimizer 
Adam with an initial learning rate of 

0.001 

epochs 30 

Batch size 64 

Output layer Single neuron with sigmoid activation 

B. Comparative Analysis 

From Table IV, it's clear that the LNN model achieved the 
highest prediction accuracy of 96% compared to the other 
existing methods. While CViT, Multi-Sensor systems, and 
Stacking models also showed strong performance, LNN 
outperformed them all. This shows that LNN is more effective 
at learning complex patterns in environmental data, making it a 
better choice for accurate and early forest fire prediction. The 
graphical interpretation is also shown in Fig. 2.  

TABLE IV.  ACCURACY COMPARISON: LNN VERSUS EXISTING 

APPROACHES 

Method Accuracy 

CViT [7] 92% 

Multi-Sensor Network System [12] 93% 

Stacking Model [5] 94% 

LNN 

(Proposed) 
96% 

 

Fig. 2. Accuracy Comparison Graph 

V. CONCLUSION AND FUTURE SCOPE 

This research focused on predicting forest fires using a special 

kind of neural network called an LNN. Unlike traditional 

models, the LNN can understand how environmental conditions 

like temperature, humidity, wind speed, and rainfall change 

over time. This helps the model make smarter and more 

accurate predictions. The model was trained and tested using 

the Mendeley Forest Fire Dataset, which contains real-world 

weather and fire-related data. After applying the necessary 

preprocessing steps and training the LNN, the model was able 

to reach a prediction accuracy of 96%. This means that in most 

cases, the model correctly identified whether a fire would occur 

or not. Such a high accuracy shows that the LNN is highly 

effective in spotting early signs of forest fires. This can help 

authorities respond quickly, reduce damage to nature, protect 

wildlife, and keep nearby people safe. The outcome of this 

research proves that LNNs are a reliable tool for forest fire 

prediction and can play an important role in disaster prevention 

and forest safety. In the future, this model can be connected 

with live sensor networks in forests to give real-time fire 

warnings and help with faster emergency responses. 
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